
J .  Fluid Mech. (1986), vol. 168, pp. 227-244 

Printed in Great  Britain 
227 

On mixing across an interface in 
stably stratified fluid 

By XUEQUAN Et AND E. J. HOPFINGER 
Institut de M6canique, Universit6 de Grenoble et C.N.R.S., Grenoble, France 

(Received 19 March 1985 and in revised form 3 December 1985) 

Mixed-layer deepening in stratified fluid has been studied experimentally in mean- 
shear-free turbulence generated by an oscillating grid. Conditions were varied over 
a wide range and both two-layered and constant-gradient fluid systems were 
considered. It is shown that the mixed-layer deepening rate is represented well by 
power laws, and when local scaling is used all the data can be collapsed on an 
entrainment relation E = K R P  with n = 1.50_+0.05 when Bi 2 7. This power law 
suggests that the turbulent kinetic energy is made available for mixing on a buoyancy 
timescale characteristic of eddy recoil or internal-wave breaking rather than a 
turbulent-eddy overturning timescale. In the constant-gradient gifuation internal 
waves are generated which radiate energy away from the interface. An evaluation 
of the radiated energy indicates, however, that generally energy radiation does not 
affect the entrainment rate. The coefficient K therefore has the same value (K ai 3.8) 
in linearly stratified fluid as in the two-layer situation. The interface thickness is 
found to be a function of stability, but reaches an asymptotic value of h / D  = 0.055 
when Ri is very large. There is some indication that the interface thickness is also 
a weak function of Reynolds number. 

1. Introduction 
Mixing in stably stratified fluids has widespread application in geophysical and 

environmental fluid systems and has therefore attracted a great deal of interest. This 
interest is further enlarged by mixing problems related to stratification in industrial 
situations such as hot-water storage, nuclear-reactor cooling and mixing of different 
substances in chemical and metallurgical industries. 

In the attempt to understand stratification effects, i t  is attractive to study mixing 
processes in situations without mean shear, which allows the isolation of phenomena 
related to turbulence alone. A relatively large number of experiments have therefore 
considered the situation where turbulence is generated by grid stirring in a stratified 
fluid layer. Pioneering work on vertical mixing due to turbulence generated by an 
oscillating grid in a two-layered fluid goes back to Rouse & Dodu (1955) and to Turner 
(1968), who was the first to propose an empirical relation between the relative 
entrainment rate E and an overall Richardson number of the form E - &-$, valid 
for large Pbclet number. This relation has been further supported by the experiments 
of Hopfinger & Toly (1976) who also related the entrainment rate to a local 
Richardson number Ri in the form suggested by Turner (1973, p. 291). A mechanistic 
explanation for the -f power law was given by Linden (1973). By projecting vortex 
rings against an interface, Linden showed that mixing takes place during the recoil 
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event, which means that the turbulent kinetic energy is made available for mixing 
at a rate set by the buoyancy timescale. Long’s (1978) phenomenological theory 
assumes that at a high Richardson number the turbulent motions near the interface 
generate internal waves in the interfacial layer which break intermittently and cause 
the mixing. Since the response time of these internal waves is again the buoyancy 
timescale, Linden’s and Long’s models would seem to be conceptually similar but 
different in detail. Long’s model leads to an entrainment relation E - Ri-i. This 
relation, although close to Ri-i, is sufficiently distinct for the difference not to be 
absorbed by experimental error. Long’s model is based on a number of assumptions 
concerning the mechanism of mixing, and confirmation of the -: relation would give 
strong support to these assumptions. 

In  two recent papers, Fernando & Long (1983, 1985) give evidence of a close 
correlation between Long’s model predictions and the experimental results. If it is 
argued that Turner’s and Hopfinger & Toly’s measurements extend only over about 
one decade in Ri, the results of Fernando & Long could be accepted to have more 
general validity. However, Barla (1980) demonstrated a clear Ri-g behaviour over 
at  least two decades in Ri. 

Chasing power laws of this sort is obviously not very rewarding, and for practical 
purposes it seems a fruitless task to try to decide between exponents close to each 
other. Thermocline models, for instance, which are based on energy considerations 
equivalent to a relation of the form E - Ri-l, in fairly good agreement with 
laboratory experiments on convective stirring (DeardorfF, Willis & Stockton 1980), 
give satisfactory prediction of mixed-layer deepening. There is, however, sufficient 
fundamental incentive to determine the value of the power-law exponent or to give 
bounds for it, because such experiments set the basis for the development of future 
models and help to understand the mixing process. 

In  this paper we present results on mixed-layer deepening in two-layer and linearly 
stratified fluid, driven by an oscillating grid. The constant density gradient is 
considered together with the two-layered system in order to see whether radiation 
of energy by internal waves has any effect. The grid location and grid amplitude and 
frequency were varied to emphasize the universal character of ‘local ’ scaling. The 
dependence of interface thickness on local stability, which is a consequence of the 
mechanism of mixing, is also given. The results presented, although not novel 
conceptually, clarify a number of questions raised by previous experiments. 

2. The experimental conditions 
2.1. The apparatus 

The apparatus used was a revised version of the Hopfinger & Toly (1976) installation. 
It is a transparent mixing box of 51.4 x 51.4 em in cross-section and 70 cm in depth, 
equipped with a grid of 20 mm square bars, aligned in a square array of mesh 
M = 10 cm. The grid, placed horizontally in the tank, could be oscillated vertically 
with a stroke S = 1-9 cm and with frequencies up to 6 Hz. The important difference 
with respect to the arrangement used by Hopfinger & Toly lies in the uneven number 
of meshes to fit into the tank and in the mounting of the grid; the grid was mounted 
on a 1 cm diameter rod extending throughout the fluid layer. It is thus an upscaled 
version of Turner’s (1968) and McDougall’s (1979) arrangement. The advantage is 
that no fluid is displaced during grid oscillation, and furthermore the grid is easily 
positioned at any depth in the tank. The uneven number of meshes gives more 
acceptable wall conditions, that is to say the wall is a plane of symmetry. In  the 
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Hopfinger & Toly experiments the grid had an even number of meshes, with bars 
sliding near the walls, and this often generated strong motions near the walls. These 
secondary motions could be kept at an acceptable level only by trial and error, using 
either an inner box or strips of fine-mesh grids attached to the oscillating grid. 

2.2. Oscillating grid turbulence characteristics 
Turbulence measurements in oscillating-grid turbulence have been made by Thomson 
& Turner (1975), Hopfinger & Toly (1976), McDougall (1979) and recently by Mory 
& Hopfinger (1985). All these experiments indicate a spatial decay of the horizontal 
r.m.s. turbulent velocity u of the form u a z-l, where z is measured from a virtual 
origin which, in the present experiments, coincides with the grid midplane. Thomson 
& Turner's results are indeed also well represented by a z-l power law, as was shown 
by Hopfinger & Toly. The empirical relation 

(1) 
U 
- = Cfi'kM~z-1 
fs 

proposed by Hopfinger & Toly is a good approximation for the r.m.s. turbulent 
velocity produced by grids of square bars with M / d  = 5, oscillated at f 6 Hz (where 
d is the bar size). The existence of an upper frequency limit has been demonstrated 
by McDougall. The constant C is close to 0.30 (Hopfinger & Toly). 

The growth of the integral lengthscale with distance from the grid is given by 

1 = pz. (2) 

This scale was measured in homogeneous fluid by Thomson & Turner, Hopfinger & 
Toly and Mory & Hopfinger. The numerical value of p refers to the longitudinal 
integral lengthscale obtained from the integral of the measured autocorrelation of the 
horizontal turbulent velocity. If experiments agree on a linear relation of the form 
(2), they diverge on the actual value of p. Hopfinger & Toly found a dependence of 
/3 on stroke S when S / M  5 0.8, whereas recent measurements by Mory & Hopfinger 
(1985) indicated that /3 at S / M  = 0.8 is little different from the value p = 0.10 at 
S / M  = 0.2 (Thomson & Turner 1975). The autocorrelations in the Mory & Hopfinger 
experiments had however a large negative part, leading to a smaller value of the 
integral scale. As will be seen later ($4), the actual value of /3 is of importance for 
the determination of the proportionality coefficient in the entrainment relation. In 
the analysis of the results we use /3 = 0.10 when S / M  = 0.2, and for the larger values 
of S / M ,  /I is chosen such as to make the experiments with S / M  = 0.2 and 0.85 
collapse on one curve, but the same values of /3 are then used in the two-layered 
and constant-density-gradient fluids. 

Oscillating-grid turbulence, like ordinary grid turbulence, is sensitive to initial 
conditions. Besides the requirement of sufficiently low solidity 5 0.45 yo, the decay 
depends on the initial energy distribution. An initial excess of energy at large scales 
gives rise to a more rapid decay of energy than an initial energy deficiency at large 
scales. Oscillating grid turbulence is, in addition, strongly affected by the grid 
geometry near the wall. Experiments show that an end condition that considers the 
wall as a plane of symmetry is the best choice for obtaining a homogeneous turbulent 
field. The gap between the wall and the ends of the grid bars must be kept as small 
as possible. 

2.3. Con&urations studied 

In all experiments, the total fluid column was 60 cm in depth. The density (salinity) 
stratification of the fluid column shown schematically in figure 1 was either 
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FIGURE 1. Schematic diagram of the experimental arrangements. 

yered, with the interface 22 cm below the free surface in configuration of 
figure -1 (a), or consisted of a constant density gradient. Some experiGents were 
conducted with a constant-density-gradient layer adjacent to an interface or to a 
homogeneous layer to study the importance of the wave-energy flux (see $6). 

The grid was positioned either near the top, 11 cm below the free surface, or in the 
centre of the fluid column (figure l b ) .  When in the top position the stroke was set 
at 8.5 cm with frequency 1-3 Hz. In the centre position only a 2 cm stroke waa used, 
with frequency up to 6 Hz. Exceptions to this were some experiments emphasizing 
internal-wave-energy radiation, reported in 6. 

The depth of the mixed layer was determined from shadowgraph records to an 
accuracy of f 0.2 cm. Conductivity-probe traverses along the vertical were made to 
determine the interface thickness. 

To visualize wave motions in the constant-gradient region, 200 pm diameter wood 
particles were introduced in the fluid, and a vertical slice of fluid was illuminated. 
The density of wood particles depends on the time of immersion in water. After about 
20 min their density is close to 1.00 g/cm3. The maximum density is 1.17 g/cma. 

3. Mixed-layer deepening in time 
3.1. &id position near the top 

Taking the z’axis as positive-downward with z‘ = z+z, (figure la), the density p(z) 
is given by 

(3) 
p ( - z , < z <  D-h) ,  

P = {  Pa ( D < z < H )  

for the two-layer stratification, and by 

( -zo < 2 < D-h) ,  

po+rz’ ( D  < z < H )  
e, 

(4) 

for the constant-density-gradient r fluid. The interface thickness h is generally small 
compared with D. When the interface thickness is supposed constant, the expression 
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for P and the density jump Ap across the interfacial layer are for system (3 )  given 

where Do is the initial position of the interface measured from the mid position of 
the grid and p1 and pa are the initial densities of the upper and lower layers 
respectively (see figure 1). The linear stratification expressed by (4) gives 

To establish a relation for the mixed-layer deepening rate, an assumption must be 
made on the conversion of kinetic-energy flux into the interface and the rate of change 
of potential energy. The assumption of proportionality used by Linden (1975) leads 
to the relations D oc t$ for the two-layered fluid and D oc ti for a constant-gradient 
fluid. 

Long’s model gives respectively for stratifications ( 3 )  and (4) 

where 

and 

where 

do = Do + 20, 

D oc N-h dfS)i ( S M ) f d ,  

The power laws (7) and (8) together with (1) and (2) are consistent with an 
entrainment relation E oc Ri-f. On the other hand, the time dependence of mixed-layer 
deepening consistent with (1) and (2) and 

E %= ~ ~ i - t ,  
U 

where u, = dD/dt and Ri = g(Ap/P) 1/u8, are for the two-layer stratification 

( D  4 20, Do = O ) ,  

and for the constant-gradient situation 

Expression (9) has support from experiments by Turner (1968,1973) and Hopfinger 
& Toly (1976) and can be explained by Linden’s (1973) mixing model. 

3.2. W d  positioned in the centre 
Positioning the grid in the centre simplifies the expressions for P and Ap and has 
the advantage that zo = 0. For the two-layer stratification P = !j(pl+pa) and 
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Ap = +(p2-pl) and for the constant-gradient situation p = po and Ap = r D .  The 
power laws corresponding to E - Ri-f are 

D cc g- IS( fS):: (SM$ th, ( 2r 
D cc N-Q (fs): (SM)i ti (13) 

respectively for the two-layer fluid and the constant-density-gradient fluid. 

3.3. Experimental results 

Depth-time relations 
In  figures 2 (a,  b )  the experimental depth-time relations are plotted on a logarithmic 

scale for the two-layer stratification. Figure 2(a) is for stirring near the top with 
S = 8.5 cm, and figure 2(b) refers to the arrangement shown in figure 1 ( 6 )  with 
S = 2 cm. It’is seen from these figures that the power laws D cc ti, (lo), and D cc &, 
(12), are very good representations of the data. Least-square fits to six runs carried 
out in the situation of figure 2 (a)  give a slope of 0.195 f 0.01, and for the arrangement 
of figure 2 (b )  the slopes of six runs lie within 0.156+0.002. The correlation coefficient 
was always 99 % or more. 

It can be argued that (10) is valid only when D % zo, which is clearly not entirely 
satisfied by the experimental conditions corresponding to figure l (a) .  An effect 
related with zo and Do would tend to decrease the exponent of t  a t  small values of 
D .  Figure 1 (a )  indicates that at large values of D the slope tends to decrease rather 
than increase. When the grid is located in the centre of the fluid these difficulties are 
eliminated. Figure 2 (b)  clearly indicates good agreement of the experiments with the 
suggested power law D cc t&, (12). 

The results obtained for the time dependence of the mixed layer in a constant- 
gradient fluid are also in excellent agreement with (11) and (13). This is shown in 
figures 3(a, b ) ,  where D is plotted on a logarithmic scale as a function of time. 
Least-square fits to six sets of data gave a slope of 0.129 f 0.005 for the conditions 
of figure 3(a), and 0.125+0.010 for the conditions of figure 3(b), for which eight 
experimental runs were performed. Again, the results in figure 3(a ) ,  which where 
obtained by stirring near the top, are subject to errors resulting from a finite value 
of zo. The good agreement between the results presented in figures 3(a) and ( b )  
indicates, however, that this error remains negligible. 

Frequency dependence 
The frequency dependence is a further check on the consistency of the results. From 

figures 2 and 3 we can determine the coefficients K,(i = 1 for the two-layer case and 
i = 2 for the constant-gradient fluid) in 

D = Ki t n b  

and then determine the exponent of the frequency from K,  = C,f”t by a least-square 
fit of K,  versusf. The values for K,, C,, ni and ai are given in table 1. In general, 
good agreement is obtained between the predicted and measured frequency depen- 
dence.The higher exponent off in the case where the grid was positioned in the centre 
of the fluid column is due to the fact that the stratification was not quite the same 
at  the three frequencies (see table 1) .  No correction was applied to the values Kl and 
K,, which would account for the lower values of Apo/p2  and N at the higher 
frequencies. Since K,  increases when, for the same frequency, the stratification is 
decreased, the exponent off is somewhat overestimated. 
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FIQURE 2. Mixed-layer depth D, measured from the grid midplane, plotted logarithmically as a 
function of time for two-layer fluid. (a) Grid positioned near the top (figure l a ) ,  oscillated with 
stroke S = 8.5 cm and a frequency f =  1 Hz (O), 2 Hz (n), 3 Hz (A); initial stratification 
Apo/p2 = 4.75% with Do = 11 cm. ( b )  Grid positioned in the centre (figure l b )  with S = 2 cm: 0, 
f = 4 Hz, Apo/pe = 3.65%; a, 5 Hz, 3.38% ; A, 6 Hz, 2.90%. In (a )  and ( b )  the solid lines indicate 
the power laws (10) and (12). 

4. Entrainment relation and mechanism 
4.1. Richardson-number dependence 

The results on mixed-layer deepening presented in $3  are consistent with an 
entrainment relation given by (9), when it is assumed that the variations with depth 
of the r.m.s. turbulent velocity and the integral scale follow relations of the form (1) 
and (2). In homogeneous fluid a dependence of u oc 2-l corresponds to a time variation 
D K ti. This t power variation of the turbulent layer depth has again been verified 
for the present conditions. 
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FIGURE 3. Mixed-layer depth versus time in linearly stratified fluid. (a) Grid near the top with 
S = 8.5 cm and f =  1 Hz, N = 1.278 s-l (O), 2 Hz, 1.227 s-l (0) 3 Hz, 1.195 s-l (A). ( b )  Grid 
in centre with S = 2 cm andf= 4 Hz, N = 1.189 s-l (a), 5 Hz, 0.75 s-llm), 6 Hz, 0.693 s-l (A); 
-, power laws (1 1) and (13). 

Since (9) relates the entrainment velocity to local turbulence quantities, all the 
experiments should be representable by the same unique relation. Figures 4 (a) and 
(b) show logarithmic plots of the entrainment coefficient E = u,/u as a function of 
local Richardson number Ri = gApl/pu2 for the two-layer fluid and the constant- 
gradient layer respectively. For the sake of clarity two separate graphs are given. The 
entrainment velocity u, was determined from the measured rates of deepening of the 
mixed layer, and u and I used in the expression for the Richardson number were 
calculated from (1) and (2), with z = D. The value of /I in (2) was taken equal to 0.10 
when S = 2 cm. With stroke S = 8.5 cm the value of /I necessary to make the data, 
obtained with S = 2 cm, collapse with those of 8.5 cm for the two-layer stratification 
(figure 4a) is /I = 0.24. The best collapse for the linearly stratified situation is 
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Two-layered 

Grid near 
top 

central 
position 

Grid in 

APo/Pz Kl Cl 

i 4.9 

(Yo)  (cm s-"*) nl (cm scrl-"1 ) a1 

1 4.87\ 

I E j  
3.65 5.45 1 
2.90 7.85 j ((0.62) 

4.75 

3.38 6.99 B 2.05 I 0.75 

Constant-gradient 

Grid near 
tQP 

Grid in 
central 
position 

S f N 
(cm) (Hz) (8-l) 

1 1  
1.2787 

8.5 1.2270 j 1.1956 
4 1.189 

2 5 0.705 
6 0.693 

KZ c2 

(cm n2 (cm s a ~ - " ~  1 a2 

9.43 1 
14.35 t 9.51 10.50 
17.37 1(0.W 

l l . 0 9 j  l(O.50) 

8.45 I 
9.77 . Q 3.21 0.64 

TABLE 1 .  Numerical values for the depth-time relation D = CJWnf 
(i = 1, two-layered fluid; i = 2, constant-gradient). 

The values of a, in parentheses are the theoretical values. 

obtained with /3 = 0.23. This value of /3 is well within the variations of /? suggested 
by Hopfinger & Toly. All the results collapse on a relation 

The individual data sets show larger dispersions, and least-square fits to the 
experimental points obtained in the two-layered fluid resulted in n = 1.45 & 0.05 for 
the experiments with S = 8.5 cm and 1.40k0.15 when S = 2 cm with the grid in 
the centre. The linearly stratified fluid results gave slightly higher slopes : 
n = 1.5f0.08 when S = 8.5 cm, and n = 1.50f0.15 when S = 2 cm. These results 
substantiate the earlier findings of Turner (1968) and Hopfinger & Toly (1976). 

The proportionality coefficient K is also of interest. For both the two-layer and 
constant-gradient fluids we get from figures 4 (a, b) a value K x 3.8t comparable to 
K N 2.5 indicated by the results of Turner (see Turner 1973, p. 291) and Hopfinger 
& Toly. The somewhat higher value of K in the present experiments is due to a slight 
underestimation of u by using C = 0.3 in (1).  The value of K is very sensitive to errors 
in u and should not be given undue emphasis. It may be noted, however, that 
Fernando & Long's (1985) data give a much larger value of K. When using C = 0.3 
for the correlation of their data we find K N 22. This rather high value of K would 
indicate that the turbulent velocity was larger by a factor of about 1.5 than would 
be predicted by (1) with C = 0.3. Strong secondary motions generated by the end 
conditions of the grid in their experiments may have been the cause of this rather 
high effective turbulent velocity. In  the presence of strong secondary motions the 
spatial decay rate is likely to be different near the grid than further away from it. 
The experiments of Hopfinger & Toly (1976) give some indication of such different 
decay rates. 

E = KRi-", with n = 1.54+0.05. 

t u means roughly equal to within an uncertainty factor of 0 .S1.2;  'x 0.6-1.8; -, +3. 
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FIQURE 4(a).  For caption see facing page. 
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The power-law correlation is valid only beyond a certain value of Richardson 
number. When Ri is small a turbulent eddy entering the interfacial layer will tend 
to thicken the interface, whereas when Ri is large the interface will remain sharp. 
This aspect has been discussed by Linden (1979) by evaluating the flux Richardson 
number as a function of overall stability for different stratified-flow experiments. In 
oscillating-grid experiments the change occurs at  a Richardson number Ri x 7, as 
can be seen from figures 4(a, b ) .  This behaviour can also be interpreted in terms of 
collapse of turbulence in stratified fluid which is characterized by a local Foude 
number u/NZ x 0.3 (Dickey & Mellor 1980; Browand & Hopfinger 1985) here related 
to the local interfacial Richardson number by Ri = (1/0.3)2h/Z, where h is the 
interface thickness. Since in general in the experiments h is of order Z (see § 5 ) ,  the 
local Froude number criterion gives a reasonable indication of the change in the E 
versus Ri relation. The experimental scatter is unfortunately too large to determine 
any influence of hl l .  

4.2. Entrainment mechanisms 
The present paper emphasizes questions concerning the entrainment relation, the 
interface thickness and possible effects of energy radiation by internal waves. The 
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FIQURE 4. Entrainment rate E = u,/u plotted logarithmically as a function of local Richardson 
number Ri = gApZ/pue. (a) Two-layer fluid: 0,f = 1 Hz, S = 8.5 cm; 0, 2 Hz, 8.5 cm; A, 3 Hz, 
8.5 cm; IJ, 5 Hz, 2 cm; A, 6 Hz, 2 cm. For comparison, Turner’s (1973) data (+) and Hopfinger 
& Toly’s data ( x  ) are included. The slope -t is the best fit to the present data. (b) Constant- 
density-gradient fluid: O , f =  1 Hz, S = 8.5 cm; 0 , 2  Hz, 8.5 cm; A, 3 Hz, 8.5 cm; 0, 4 Hz, 2 cm, 
[I], 5 Hz, 2 cm; A, 6 Hz, 2 cm; -, slope -4. In  both cases u and Z were calculated from (1) and 
(2) with z = D. 

entrainment mechanism would need a separate, more sophisticated investigation. 
However, since the questions addressed are intimately related to the entrainment 
mechanism, it seems valuable to give it some consideration. 

When the Richardson number is low (Ri N l),  entrainment is by engulfment, just 
as in non-stratified fluids. The turbulenbnon-turbulent interface has large ex- 
cursions. As the Richardson number increases, the interface smoothes out, and when 
Ri is large, the perturbations at  the boundary between the interfacial layer and the 
non-turbulent fluid become very small. This change with stability of the interfacial 
layer structure is shown in figures 5(a-c), which are shadowgraphs taken a t  
Ri = 22.1 (a), 53.9(b) and 199.8(c). These photographs also show an increasing 
number of striations in the interfacial layer (figure 5 c )  with increasing Ri, which is 
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(4 (b) (4 
FIGURE 5. Shadowgraphs showing the mixed-layer deepening (from grid to  interface) and the change 
in interfacial-layer structure. The layer below is stably stratified with N = 1.278 0, The grid is 
oscillated with frequency f =  1 Hz and with stroke S = 8.5 cm. (a) 33 s after starting grid, 
D = 1 4 c m , R i = 2 2 . 1 ; ( b ) , 2 2 7 s ,  D = 1 8 c m , R i = 5 3 . 9 ; ( ~ ) , 3 6 2 5 a , D = 2 7 c m , R i = 1 9 9 . 8 .  

indicative of strong density gradients caused by internal-wave motions. These strong 
gradients enhance the mass flux through the interfacial layer from its non-turbulent 
edge to the turbulent boundary, where wisps or filaments of fluid are then lifted off 
and mixed through the turbulent layer. These ejections of fluid into the turbulent 
layer may be a result of eddy recoil, as was suggested by Linden (1973) and of 
internal-wave breaking as suggested by Long (1978). 

Linden’s recoil mixing model is based on the observations he made in his vortex 
ring experiment (Linden 1973) that the turbulent kinetic energy is not made available 
for mixing with the incoming turbulent velocity u, but rather with a recoil buoyancy 
velocity d / T B ,  where d is the penetration depth of the eddies, d N fius/gAp, and 
rB - (pZ/gAp)t is the response time of the interfacial layer to disturbances of 

pu=a d D  lengthscale 1. The relation -- D x g A P  
TB 

then gives UJU - Ri-t. This very simple model seems to contain the essential physics. 
It is important to note that internal-wave breaking has a similar scaling. In a footnote 
Linden points out that the ejections caused by breaking internal waves of length 
A - 1 also have a timescale (pZ/gAp)f, and thus make the kinetic energy available for 
mixing at a similar rate as the recoil mechanism. It is our belief that Long’s model 
has a valid physical basis, but the detailed steps leading to the Rid relation 
may incorporate some assumptions not supported by experiments. 

5. Interfacial-layer thickness 
The interface thickness is a signature of the mechanisms of mixing across an 

interface. As was mentioned above, when the stratification is weak or moderate, local 
instabilities can occur which thicken the interface. With strong stratification, mixing 
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FIQUEE 6. Recordings of density variations from conductivity-probe output with grid in 
central position in two-layer fluid cf = 5 Hz, S = 2 cm). 

may be caused by the lift off of filaments due to intermittent breaking of (resonant) 
internal waves aa suggested by Long (1978) or due to the recoil of impinging eddies 
(Linden 1973). The interface thickness should therefore depend on stability conditions, 
at least in the moderately high-Richardson-number range. Results obtained for 
penetrative convection experiments by Deardorff et al. (1980) suggest that the 
interface thickness, normalized by the mixed-layer depth, is a decreasing function 
of Ri, with an asymptotic value at high values of Ri. For grid-stirring experiments 
Fernando & Long (1985) concluded that h/D is nearly independent of Ri. 

In  the present experiments the interface thickness was determined from 
h = (dp/dz),,,/Ap. Thisdefinition corresponds to Crapper & Linden’s (1974) definition 
and to h, of Fernando & Long (1985). The density gradient was obtained from 
recordings of the mean of the output of three conductivity probes dropped simul- 
taneously through the fluid layer. A typical example of such recordings is shown 
in figure 6, with the grid in the centre of the fluid column. 

In  figure 7 we have plotted the interface thickness normalized by D as a function of 
Ri for linearly stratified fluid, with the grid oscillated at different frequencies and 
with stroke S = 2 cm. This figure indicates a clear dependence of h/D on Ri, with h / D  
varying from 0.15 for low values of Ri ( R! 10) to 0.06 when Ri is large ( *  200). A 
good functional representation is 

h/D = 0.055 + 0.91 Ri-I. 

The behaviour of h / D  for conditions S = 8.5 om, shown in figure 8, can also be 
approximated by this relation. There is, however, a tendency for the asymptotic 
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FIGURE 8. Non-dimensionalized interface thickness h / D  as a function of Ri for linearly stratified 
and two-layer fluid with grid positioned near top, oscillated with S = 8.5 cm and f = 2 Hz, 
N = 1.250 s-l (O), f =  1 Hz, Apo/p2 = 4.75% (O), 2 Hz, 4.75% (A), 3 Hz, 4.75% (V); ---- is 
0.055 +0.91 Ri-'. 

value of h / D  to be lower when S = 8.5 cm, which would seem to exclude a scaling 
of h on 1. 

The considerable scatter in figures 7 and 8 cannot solely be attributed to 
experimental uncertainty. There is some fairly consistent trend for h / D  to be smaller 
when, for constant Ri, the grid oscillation frequency is increased. This might be 
indicative of some Reynolds-number dependence at intermediate values of Ri. 
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FIGITRE 9. Streakline photograph showing internal-wave motion in the constant gradient layer 
below the interface. (a) Conditions are S = 8.5 cm, f = 3 Hz, N = 1.251 s-l, D = 26.6 cm, 
A p / p  = 0.030, Ri = 26, h N 2 cm; the exposure time is 1 s. ( b )  S = 2 cm, f = 2 Hz, N = 1.12 s-l, 
D = 17 cm, Appo/pl = 0, N l / u  = 5 ;  the exposure time is 4 s. In the stably stratified layer the 
particles have a free-fall velocity N 0.5 cm s? in (b). 
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6. Energy radiation by internal waves 
In the present experiments the entrainment rate of the constant-gradient fluid was 

in no measurable way affected by energy radiation by internal waves. This is deduced 
from the fact that the proportionality coefficient K in the entrainment relation for 
the linearly stratified fluid was Qot different from the value in a two-layer fluid (see 
figure 4). Wave motions were, however, generated in the stably stratified layer 
adjacent to  the interface, as shown for instance in figure 9(a ) ,  which is a streakline 
photograph taken in a situation where relatively strong wave activity was observed. 
To evaluate the importance of these waves in the mixing process is not a simple 
matter. Linden (1975) expressed the energy leakage rate by L = p0a2Nah/3nd3, 
where a and h are the wave amplitude and wavelength, which he compared with 
the rate of potential-energy increase in the mixed layer. The expression for the ratio 
of the two is 

4 aehN A = -  
3Xd3 [ ( a 2  - a:) + 2Rdil d ’ 

where d = D + zo and R = gApo/po Wd, and the dot represents the time derivative. 
The value of A depends on the choice of a and A. Taking a = h and h = x l ,  we get 
for the conditions shown in figure 9 ( a )  a value of A = 0.3. According to Linden’s 
criteria, energy radiation by internal waves should not be negligible in this case. 

A direct evaluation of the kinetic wave energy from figure 9 ( a )  gives 
(2uk+wk)/3u2 N 0.020 at D+3.8 cm and 0.013 at D+11.5 cm. The value of D in 
figure 9 is 26.6 cm and u has been evaluated at z = D. The wave-energy flux is 

which should be compared with the energy flux into the interface. With N = 1.25 s-l 
and h = n1 we find 

F !  (2u:+wk)lN 
= 0.03t 

94u3 6u3 

In the absence of an interface, with the turbulent layer adjacent to the fluid layer 
with a stratification of constant N, this ratio should be about 0.12 according to the 
theory of Carruthers & Hunt (1986) ; note that these authors compared E,  with u3 
rather than 32. Damping of the interfacial layer could explain this difference. For 
conditions corresponding to figure 9 (a) the interface stratification N I  x 3.7 s-l, giving 
N,l /u = 8.5, which is close to conditions for maximum wave energy (Carruthers & 
Hunt). In the interface, wave motion is therefore likely to be predominant, but only 
a small amount of energy escapes into the constant-gradient layer. 

Encouraged by the work of Carruthers & Hunt, we attempted to run an experiment 
with conditions close to their criterion for maximum wave-energy radiation. A 
uniform-density layer of 21 cm depth was placed above a constant-density-gradient 
layer with N = 1.12 s-l. The grid was placed at zo = 6 cm below the free surface and 
was oscillated with a stroke of 2 cm and a frequency of 2 Hz. Initially the interface 
waslocatedat Do = 7.5 cm and there was no interfacial layer between the homogeneous 

t This ratio could be larger by a factor of up to two because of the potential-wave-energy part 
which was not included in qw. The importance of wave reflection from the boundary is not known 
either. It can, however, be argued that because the measured value of qw would contain the reflected 
wave energy and because the reflected wave-energy flux would have to be subtracted from qw given 
above, the effect of wave reflection would be to decrease the value of the given energy ratio. 
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and the constant-gradient layers. A streak photograph showing the mixed-layer 
turbulence and the wave motion in the stably stratified layer is presented in 
figure 9(b). In this photograph D x 17 cm and NZ/u = 5. The particles in the stable 
layer have a free-fall velocity of about 0.5 cm s-l. The ratio of kinetic wave energy 
'4(2uk+wk) to the incoming turbulent kinetic energy $uz is about 0.015 at 
Do+ 10 cm in this photograph. Since in this experiment I is smaller than in the 
conditions of figure 9(a), the ratio of wave-energy flux to turbulent kinetic-energy 
flux is even smaller than 0.03, meaning that wave-energy radiation remains 
unimportant. 

The mixed-layer deepening rate was also measured. Initially there was a rapid 
deepening, as would be expected until a density interface built up. At long times (after 
about 30 min) when the mixed layer had deepened by about 3 cm, the deepening rate 
followed again the d power law with a value of K,  close to that given in table 1. It 
should be noted that this value of K,  corresponds to a value of K in the entrainment 
relation (9) identical with that in the two-layered fluid. 

A further experiment with Do = 15 cm, zo = 6 cm, Apo/pl = 0.01, N = 0.24 s-l and 
S = 2 cm with f = 5 Hz, which comes closer to Linden's situation, also indicated no 
measurable effect of wave-energy radiation on the entrainment rate. 

6. Conclusions 
It has been shown that mixed-layer deepening in two-layer and linearly stratified 

fluid by turbulence generated with an oscillating grid obeys a power-law relation in 
time valid in the depth range where secondary effects remain negligible. These power 
laws are consistent with an entrainment relation E = KRi-" with n = 1.5kO.05, 
where E = u,/u and Ri = gApl/pua are defined with turbulence length and velocity 
scales near the interface, with the entrainment velocity calculated from the mixed-layer 
deepening rate u, = dD/dt. This power-law exponent, valid when Ri 2 7 and when 
the P6clet number is large, differs from Fernando & Long's (1983) value but 
substantiates earlier findings by Turner (1968) and Hopfinger & Toly (1976) obtained 
under different conditions; the mixed-layer depth was kept constant in the latter two 
experiments, which eliminates any uncertainty concerning turbulence decay in the 
mixed layer. An explanation for the different results obtained by Fernando & Long 
may be found in the possible existence of relatively strong secondary motions 
generated by unsatisfactory near wall conditions of the grid. This is inferred from 
their large value of K in the entrainment relation.The lower limit of R i m  7 
corresponds to an interfacial Froude number u/N, I x 0.3, which is close to the value 
of maximum internal wave generation (Carruthera & Hunt 1986). 

The mechanisms of mixing that can explain an Ri-f power law have in common 
that the turbulent kinetic energy is made available for mixing at the buoyancy 
timescale rather than at the turbulence timescale l/u. Both direct recoil of an eddy 
and internal-wave breaking have the same timescale. The occurrence of one or the 
other event may depend on the angle of incidence of an incoming eddy. 

The proportionality coefficient K has the same value (K x 3.8) in the two-layer and 
the constant-gradient fluids, which indicates that energy radiation by internal waves 
in the stratified layer adjacent to the interface is of no importance in the mixing 
process or mixing rate. The wave-energy flux in the stable layer is typically a few 
per cent (less than about 5% under most circumstances) of the turbulent kinetic 
energy flux into the interface. The interface acts as a filter for energy transfer to 
internal waves in the stable layer. 
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The interface thickness, defined by h = (dp/dz),,,/Ap, normalized by the mixed- 
layer depth, has been shown to be a function of Richardson number in the form 
h/D = 0.055+0.91 Ri-’. This variation is similar to that observed in penetrative 
convection (Deardorff et al. 1980), though the numerical values differ mainly because 
of the different definition of the interface thickness used. 
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